Investigation of microtubule assembly and organization accompanying tension-induced neurite initiation.
نویسندگان
چکیده
Pulling on the margin of embryonic chick sensory neurons induces neurite formation de novo. We find that these neurites contain microtubules within minutes after the application of tension and apparently normal microtubule arrays within 10-20 min. We wished to determine whether these microtubules reflected existing microtubules that were reorganized, e.g. pulled into the neurite by the applied forces, or whether they reflected primarily new assembly of tubulin. We investigated tension-induced neurite initiation in the presence of 4 nM vinblastine, a concentration that poisons net microtubule assembly but does not depolymerize extant polymers, thus separating new assembly from movements of existing microtubules. We find that vinblastine seriously compromises the ability of chick sensory neurons to initiate neurites in response to tension. The few poisoned neurites that did form were abnormal in several respects. In contrast to unpoisoned cells, poisoned neurites were prone to stretching and breaking while pulling, as though they lacked normal structural support. Indeed, poisoned neurites possessed only short microtubule fragments. We conclude that the microtubule array seen in tension-induced neurites reflects primarily new microtubule assembly, rather than existing microtubules that were reorganized to invade the neurite. This implies that tension applied to unpoisoned chick sensory neurons rapidly stimulates new microtubule assembly concomitant with neurite initiation. Examination of the tension-induced microtubules shows that both their spatial pattern and their acetylation are similar to that reported for normal growth cone-mediated neurites.
منابع مشابه
The role of microtubule-associated protein 2c in the reorganization of microtubules and lamellipodia during neurite initiation.
During neurite initiation, cells surrounded by a flattened, actin-rich lamellipodium transform to produce thin, microtubule-filled neurite shafts tipped by actin-rich growth cones, but little is known about this transformation. Our detailed time-lapse analyses of cultured hippocampal neurons, a widely used model system for neuronal development, revealed that neurites emerge from segmented lamel...
متن کاملInhibition of neurite initiation and growth by taxol
We cultured sensory neurons from chick embryos in media containing the alkaloid taxol at concentrations from 7 X 10(-9) to 3.5 X 10(-6) M. When plated at taxol concentrations above 7 X 10(-8) M for 24 h, neurons have short broad extensions that do not elongate on the culture substratum. When actively growing neurites are exposed to these levels of taxol, neurite growth stops immediately and doe...
متن کاملNerve growth factor-induced neurite outgrowth in PC12 cells involves the coordinate induction of microtubule assembly and assembly-promoting factors
Nerve growth factor (NGF) regulates the microtubule-dependent extension and maintenance of axons by some peripheral neurons. We show here that one effect of NGF is to promote microtubule assembly during neurite outgrowth in PC12 cells. Though NGF causes an increase in total tubulin levels, the formation of neurites and the assembly of microtubules follow a time course completely distinct from t...
متن کاملThe initiation of neurite outgrowth by sympathetic neurons grown in vitro does not depend on assembly of microtubules [published erratum appears in J Cell Biol 1995 Feb;128(3):443]
Neurite formation by dissociated chick sympathetic neurons in vitro begins when one of the many filopodia that emanate from the cell body of a neuron is invaded by cytoplasm containing microtubules and other components of axoplasm (Smith, 1994). This study was undertaken to determine whether this process depends on assembly of microtubules. To inhibit microtubule assembly, neurons were grown in...
متن کاملAMP Kinase Activation Alters Oxidant-Induced Stress Granule Assembly by Modulating Cell Signaling and Microtubule Organization.
Eukaryotic cells assemble stress granules (SGs) when translation initiation is inhibited. Different cell signaling pathways regulate SG production. Particularly relevant to this process is 5'-AMP-activated protein kinase (AMPK), which functions as a stress sensor and is transiently activated by adverse physiologic conditions. Here, we dissected the role of AMPK for oxidant-induced SG formation....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of cell science
دوره 104 ( Pt 4) شماره
صفحات -
تاریخ انتشار 1993